Publications
Identifiers, Articles, Patents
Affiliated Author Identifiers:
Researchgate:
SCOPUS Author ID:
68. Dyballa, M.; Li, Z.; Dittmann, D.; Boron vs. Aluminum in ZSM-5 Zeolites: Solid-state NMR, Acidity, and C1/C2 Reactant Conversion, Microporous and Mesoporous Materials 2024, 381, 113353, doi: 10.1016/j.micromeso.2024.113353.
67. Wachsmann, S.; Ruf, M.; Prinz, C.; Oehlsen, N.; Zhou, X.; Dyballa, M.; Arweiler, C.; Leistner, P.; Steeb, H.; Garrecht, H.; Laschat, S.; and Stegbauer, L.; ACS Sustainable Chemistry & Engineering 2024, 12, 32, 11879-11890, doi: 10.1021/acssuschemeng.4c00044.
66. Krake, S.; Conzelmann, C.; Heuer, S.; Dyballa, M.; Zibek, S.; Hahn, T.; Production of chitosan from Aspergillus niger and quantitative
evaluation of the process using adapted analytical tools, Biotechnology and Bioprocess Engineering 2024, 29, 942–954, doi: 10.1007/s12257-024-00124-3.
65. Matthies, J.; Dittmann, D.; Dyballa, M.; Tuttlies, U.; Nieken, U.; Investigation of Aging Mechanism of Pt-ZSM-5 Catalysts for Non-Oxidative Propane Dehydrogenation, Chemie Ingenieur Technik, 2024, 96, 850-863, doi: 10.1002/cite.202300167.
64. Kaya, E.; Dittmann, D.; Schmidt, M.; Dyballa, M.; Cu(dppf) complexes can be synthesized from Cu-exchanged solids and enable a quantification of the Cu-accessibility by 31P MAS NMR spectroscopy, Dalton Transactions 2024, 53, 6709, doi: 10.1039/D4DT00147H.
63. Maier, S.; Nagel, T.; Turan, M.; Kaya, E.; Frey, W.; Dyballa M.; Estes, D.; Comparison of the Catalytic Activity of Surface-Immobilized Copper Complexes with Phosphonate Anchoring Groups for Atom Transfer Radical Cyclizations and Additions, Organometallics 2024, 43, 3, 233-241, doi: 10.1021/acs.organomet.3c00377.
62. Matthies, J.; Dittmann, D.; Dyballa, M.; Nieken, U.; Slow aging mechanisms in non-oxidative reaction conditions e.g. dehydrogenation on Pt-ZSM5 catalysts, Chem. Process Eng., 2023, 44, 3, e32, doi: 10.24425/cpe.2023.146734.
61. Dittmann, D.; Kaya, E.; Strassheim, D.; Dyballa, M.; Influence of ZSM-5 Crystal Size on Methanol-to-Olefin (MTO) vs. Ethanol-to-Aromatics (ETA) Conversion. Molecules 2023, 28, 8046, doi: 10.3390/molecules28248046.
60. Dyballa, M.; Solid-State NMR Probe Molecules for Catalysts and Adsorbents: Concepts, Quantification, Accessibility, and Spatial Distribution. Energy&Fuels 2023, 37, 23, 18517-18559, doi: 10.1021/acs.energyfuels.3c03815.
59. Hahn, T.; Egger, J.; Krake, S.; Dyballa, M.; Stegbauer, L.; vonSeggern, N.; Bruheim, I.; Zibek, S.; Comprehensive characterization and evaluation of the process chain and products from Euphausia superba exocuticles to chitosan. Journal of Applied Polymer Science 2024, 141, e54789, doi: 10.1002/app.54789.
58. Peters, S.; Rieg, C.; Bartling, S.; Parlinska-Wojtan, M.; Dyballa, M.; Wohlrab, S.; Abdel-Mageed, A. M.; Accessibility of Reactants and Neighborhood of Mo Species during Methane Aromatization Uncovered by Operando NAP-XPS and MAS NMR. ACS Catalysis 2023, 13, 13056-13070, doi: 10.1021/acscatal.3c02385.
57. Dittmann, D.; Schröder, J.; Kaya, E.; Mosrati, J.; Abdel-Mageed, A. M.; Dyballa, M.; Quantifiable Surface Methoxy Species on Zr(OH) Groups of UiO-66 MOF: Generation from Methanol-13C and Reactivity. The Journal of Physical Chemistry C 2023, 127, 18962-18970, doi: 10.1021/acs.jpcc.3c04544.
56. Dittmann, D.; Kaya, E.; Dyballa, M.; Desilicated ZSM-5 Catalysts: Properties and Ethanol to Aromatics (ETA) Performance. ChemCatChem 2023, e202300716, doi: 10.1002/cctc.202300716.
55. Maier, S. E.; Bunjaku, O.; Kaya, E.; Dyballa, M.; Frey, W.; Estes, D.; Surface Immobilized Cu-1,10-Phenanthroline Complexes with α-Aminophosphonate Groups in the 5-Position as Heterogenous Catalysts for Efficient Atom-Transfer Radical Cyclizations. Dalton Transactions 2023, 52, 8442-8448, doi: 10.1039/D3DT01467C.
54. Schnierle, M.; Klostermann, S.; Kaya, E.; Li, Z.; Dittmann, D.; Rieg, C.; Estes, D.; Kästner, J.; Ringenberg, M.; Dyballa, M.; How Solid Surfaces Control Stability and Interactions of Supported Cationic CuI(dppf) Complexes─A Solid-State NMR Study. Inorganic Chemistry 2023, 62, 19, 7283-7295, doi: 10.1021/acs.inorgchem.3c00351.
53. Dittmann, D.; Rieg, C.; Li, Z.; Kaya, E.; Dyballa, M.; Better Performance in C2-Conversion to Aromatics by Optimized Feed and Catalysts. Energy & Fuels 2023, 37, 6, 4566-4579, doi: 10.1021/acs.energyfuels.3c00356.
52. Kappler, J.; Klostermann, S.; Lange, P.; Dyballa, M.; Veith, L.; Schleid, T.; Weil, T.; Kästner, J.; Buchmeiser, M. R.; Sulfur-Composites Derived from Poly(acrylonitrile) and Poly(vinylacetylene) – A Comparative Study on the Role of Pyridinic and Thioamidic Nitrogen. Batteries & Supercaps 2023, e202200522, doi: 10.1002/batt.202200522.
51. Rieg, C.; Kirchhof, M.; Gugeler, K.; Beurer, A.-K.; Stein, L.; Dirnberger, K.; Frey, W.; Bruckner, J.; Traa, Y.; Kästner, J.; Ludwigs, S.; Laschat, S.; Dyballa, M.; Determination of Accessibility and Spatial Distribution of Chiral Rh Diene Complexes Immobilized on SBA-15 via Phosphine‑based Solid-state NMR Probe Molecules. Catalysis Science & Technology 2023, 13, 410-425, doi: 10.1039/D2CY01578A.
50. Rieg, C.; Dittmann, D.; Li, Z.; Kurtz, A.; Kaya, E.; Peters, S.; Kunkel, B.; Parlinska-Wojtan, M.; Wohlrab, S.; Abdel-Mageed, A. M.; Dyballa, M.; Introducing a Novel Method for Probing Accessibility, Local Environment, and Spatial Distribution of Oxidative Sites on Solid Catalysts Using Trimethylphosphine. The Journal of Physical Chemistry C 2022, 126, 13213-13223, doi: 10.1021/acs.jpcc.2c04114.
49. Li, Z.; Dittmann, D.; Rieg, C.; Benz, M.; Dyballa, M.; Hydronium Ion and Water Complexes vs. Methanol on Solid Catalyst Surfaces: How Confinement Determines Stability and Reactivity. Catalysis Science & Technology 2022, 12, 5189-5202, doi: 10.1039/D2CY00829G.
48. Sato, K.; Yamamoto, A.; Dyballa, M.; Hunger, M.; Molecular adsorption by biochar produced by ecofriendly low-temperature carbonation investigated using graphene structural reconfigurations. Green Chem. Lett. Rev. 2022, 15:1, 287-295, doi: 10.1080/17518253.2022.2048090.
47. Li, Z.; Dittmann, D.; Rieg, C.; Benz, M.; Dyballa, M.; Confinement and Surface Sites Control Methanol Adsorbate Stability on MFI Zeolites, SBA-15, and Silica-supported Heteropoly Acid. Catalysis Science & Technology 2022, 15, 2265-2277, doi: 10.1039/D1CY02330F.
46. Huang, J.; Dyballa, M.; Freude, D.; Jiang, Y.; Wang, W.; The Journal of Physical Chemistry C Virtual Special Issue on Advanced Characterization by Solid-State NMR and In Situ Technology and in Recognition of Michael Hunger’s 65th Birthday. The Journal of Physical Chemistry C 2021, 125, 20741-20744, doi: 10.1021/acs.jpcc.1c07355.
45. Rieg, C., Dittmann, D., Li, Z., Lawitzki, R., Gugeler, K., Maier, S., Schmitz, G., Kästner, J., Estes, D.; Dyballa, M.; Quantitative Distinction between Noble Metals Located in Mesopores from Those on the External Surface. Chemistry – a European Journal 2021, 27, 17012-17023, doi: 10.1002/chem.202102076.
44. Yang, L.; Wang, C.; Zhang, L.; Dai, W.; Chu, Y.; Xu, J.; Wu, G.; Gao, M.; Liu, W.; Xu, Z.; Wang, P.; Guan, N.; Dyballa, M.; Ye, M.; Deng, F.; Fan, W.; Li, L.; Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nature Communications 2021, 12, 4661, doi: 10.1038/s41467-021-24403-2.
43. Nguyen, H.-H.; Li, Z., Enenkel, T.; Hildebrand, J.; Bauer, M.; Dyballa, M.; Estes, D.; Probing the Interactions of Immobilized Ruthenium Dihydride Complexes with Metal Oxide Surfaces by MAS NMR: Effects on CO2 Hydrogenation. The Journal of Physical Chemistry C 2021, 125, 27, 14627-14635, doi: 10.1021/acs.jpcc.1c02074.
42. Maier, S.; Cronin, S. P.; Vu Dinh, M.-A.; Li, Z.; Dyballa, M.; Nowakowski, M.; Bauer, M.; Estes, D.; Immobilized Platinum Hydride Species as Catalysts for Olefin Isomerizations and Enyne Cycloisomerizations. Organometallics 2021, 40, 1751-1757, doi: 10.1021/acs.organomet.1c00216.
41. Li, Z.; Benz, M.; Rieg, C.; Dittmann, D.; Beurer, A.-K.; Häussermann, D.; Arstad, B.; Dyballa, M.; The alumination mechanism of porous silica materials and properties of derived ion exchangers and acid catalysts. Materials Chemistry Frontiers 2021, 5, 4254-4271, doi: 10.1039/d1qm00282a.
40. Beurer, A. K.; Kirchhof, M.; Bruckner, J. R.; Frey, W.; Baro, A.; Dyballa, M.; Giesselmann, F.; Laschat, S.; Traa, Y.; Efficient and Spatially Controlled Functionalization of SBA‐15 and Initial Results in Asymmetric Rh‐Catalyzed 1,2‐Additions under Confinement. ChemCatChem 2021, 13, 2407-2419, doi: 10.1002/cctc.202100229.
39. Himmelmann, R.; Klemm, E.; Dyballa, M.; Improved ethanol dehydration catalysis by the superior acid properties of Cs-impregnated silicotungstic acid supported on silica. Catalysis Science & Technology 2021, 11, 3098-3108, doi: 10.1039/d1cy00143d.
38. Lang, S.; Dyballa, M.; Traa, Y.; Estes, D.; Klemm, E.; Hunger, M.; Direct Proof of Volatile and Adsorbed Hydrocarbons on Solid Catalysts by Complementary NMR Methods.Chemie Ingenieur Technik 2021, 93, 6, 1020-1023, doi: 10.1002/cite.202000128.
37. Rieg, C.; Li, Z.; Kurtz, A.; Schmidt, M.; Dittmann, D.; Benz, M.; Dyballa, M.; A Method for the Selective Quantification of Brønsted Acid Sites on External Surfaces and in Mesopores of Hierarchical Zeolites. The Journal of Physical Chemistry C 2021, 125, 515-525, doi: 10.1021/acs.jpcc.0c09384.
36. Sato, K.; Orihara, T.; Dyballa, M.; Hunger, M.; Instantaneous Ex Situ Mineral Carbonation Relevant to Alkali Metals in Clay Nanoparticles. The Journal of Physical Chemistry C 2021, 125, 4878-4884, doi: 10.1021/acs.jpcc.0c11521.
35. Chen, S.; Abdel-Mageed, A. M.; Dyballa, M.; Parlinska-Wojtan, M.; Bansmann, J.; Pollastri, S.; Olivi, L.; Aquilanti, G.; Behm, R. J.; Raising the COx Methanation Activity of a Ru/gamma-Al2O3 Catalyst by Activated Modification of Metal-Support Interactions. Angew Chem Int Ed 2020, 59, 22763-22770, doi: 10.1002/anie.202007228.
34. Rieg, C.; Dittmann, D.; Li, Z.; Kurtz, A.; Lorenz, I.; Estes, D. P.; Buchmeiser, M.; Dyballa, M.; Hunger, M.; Noble metal location in porous supports determined by reaction with phosphines. Microporous and Mesoporous Materials 2021, 310, 110594, doi: 10.1016/j.micromeso.2020.110594.
33. Kvande, K.; Pappas, D.; Dyballa, M.; Buono, C.; Signorile, M.; Borfecchia, E.; Lomachenko K.; Arstad, B.; Bordiga, S.; Berlier, G.; Olsbye, U.; Beato, P.; Svelle, S.; Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol. Catalysts 2020, 10, 191, doi: 10.3390/catal10020191.
32. Li, Z.; Rieg, C.; Beurer, A.-K.; Benz, M.; Bender, J.; Schneck, C.; Traa, Y.; Dyballa, M.; Hunger, M.; Effect of aluminum and sodium on the sorption of water and methanol in microporous MFI-type zeolites and mesoporous SBA-15 materials. Adsorption 2021, 27, 49-68, doi: 10.1007/s10450-020-00275-8.
31. Pappas, D. K.; Kvande, K.; Kalyva, M.; Dyballa, M.; Lomachenko, K. A.; Arstad, B.; Borfecchia, E.; Bordiga, S.; Olsbye, U.; Beato, P.; Svelle, S.; Influence of Cu-speciation in mordenite on direct methane to methanol conversion: Multi-Technique characterization and comparison with NH3 selective catalytic reduction of NOx. Catalysis Today 2021, 369, 105-111, doi: 10.1016/j.cattod.2020.06.050.
30. Dyballa, M.; Rieg, C.; Dittmann, D.; Li, Z.; Buchmeiser, M.; Plietker, B.; Hunger, M.; Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports. Microporous and Mesoporous Materials 2020, 293, 109778, doi: 10.1016/j.micromeso.2019.109778.
29. Borfecchia, E.; Pappas, D. K.; Dyballa, M.; Lomachenko, K. A.; Negri, C.; Signorile, M.; Berlier, G.; Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS. Catalysis Today 2019, 333, 17-27, doi: 10.1016/j.cattod.2018.07.028.
28. Brogaard, R. Y.; Kømurcu, M.; Dyballa, M.; Botan, A.; Van Speybroeck, V.; Olsbye, U.; De Wispelaere, K.; Ethene Dimerization on Zeolite-Hosted Ni Ions: Reversible Mobilization of the Active Site. ACS Catalysis 2019, 9, 5645-5650, doi: 10.1021/acscatal.9b00721.
27. Dyballa, M.; Thorshaug, K.; Pappas, D. K.; Borfecchia, E.; Kvande, K.; Bordiga, S.; Berlier, G.; Lazzarini, A.; Olsbye, U.; Beato, P.; Svelle, S.; Arstad, B.; Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. ChemCatChem 2019, 11, 5022-5026, doi: 10.1002/cctc.201901315.
26. Dyballa, M.; Pappas, D. K.; Kvande, K.; Borfecchia, E.; Arstad, B.; Beato, P.; Olsbye, U.; Svelle, S.; On How Copper Mordenite Properties Govern the Framework Stability and Activity in the Methane-to-Methanol Conversion. ACS Catalysis 2019, 9, 365-375, doi: 10.1021/acscatal.8b04437.
25. Holzinger, J.; Nielsen, M.; Beato, P.; Brogaard, R. Y.; Buono, C.; Dyballa, M.; Falsig, H.; Skibsted, J.; Svelle, S.; Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27Al NMR Study. The Journal of Physical Chemistry C 2019, 123, 7831-7844, doi: 10.1021/acs.jpcc.8b06891.
24. Lomachenko, K. A.; Martini, A.; Pappas, D. K.; Negri, C.; Dyballa, M.; Berlier, G.; Bordiga, S.; Lamberti, C.; Olsbye, U.; Svelle, S.; Beato, P.; Borfecchia, E.; The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study. Catalysis Today 2019, 336, 99-108, doi: 10.1016/j.cattod.2019.01.040.
23. Pappas, D. K.; Borfecchia, E.; Dyballa, M.; Lomachenko, K. A.; Martini, A.; Berlier, G.; Arstad, B.; Lamberti, C.; Bordiga, S.; Olsbye, U.; Svelle, S.; Beato, P.; Understanding and Optimizing the Performance of Cu‐FER for The Direct CH4 to CH3OH Conversion. ChemCatChem 2019, 11, 621-627, doi: 10.1002/cctc.201801542.
22. Pappas, D. K.; Borfecchia, E.; Lomachenko, K. A.; Lazzarini, A.; Gutterød, E. S.; Dyballa, M.; Martini, A.; Berlier, G.; Bordiga, S.; Lamberti, C.; Arstad, B.; Olsbye, U.; Beato, P.; Svelle, S.; Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy. Topics in Catalysis 2019, 62, 712-723, doi: 10.1007/s11244-019-01160-7.
21. Ziegler, F.; Teske, J.; Elser, I.; Dyballa, M.; Frey, W.; Kraus, H.; Hansen, N.; Rybka, J.; Tallarek, U.; Buchmeiser, M. R.; Olefin Metathesis in Confined Geometries: A Biomimetic Approach toward Selective Macrocyclization. J Am Chem Soc 2019, 141, 19014-19022, doi: 10.1021/jacs.9b08776.
20. Dyballa, M.; Obenaus, U.; Blum, M.; Dai, W.; Alkali metal ion exchanged ZSM-5 catalysts: on acidity and methanol-to-olefin performance. Catalysis Science & Technology 2018, 8, 4440-4449, doi: 10.1039/c8cy01032c.
19. Dyballa, M.; Pappas, D. K.; Borfecchia, E.; Beato, P.; Olsbye, U.; Lillerud, K. P.; Arstad, B.; Svelle, S.; Tuning the material and catalytic properties of SUZ-4 zeolites for the conversion of methanol or methane. Microporous and Mesoporous Materials 2018, 265, 112-122, doi: 10.1016/j.micromeso.2018.02.004.
18. Pappas, D. K.; Martini, A.; Dyballa, M.; Kvande, K.; Teketel, S.; Lomachenko, K. A.; Baran, R.; Glatzel, P.; Arstad, B.; Berlier, G.; Lamberti, C.; Bordiga, S.; Olsbye, U.; Svelle, S.; Beato, P.; Borfecchia, E.; The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Journal of the American Chemical Society 2018, 140, 15270-15278, doi: 10.1021/jacs.8b08071.
17. Rojo-Gama, D.; Nielsen, M.; Wragg, D. S.; Dyballa, M.; Holzinger, J.; Falsig, H.; Lundegaard, L. F.; Beato, P.; Brogaard, R. Y.; Lillerud, K. P.; Olsbye, U.; Svelle, S.; A Straightforward Descriptor for the Deactivation of Zeolite Catalyst H-ZSM-5. ACS Catalysis 2017, 7, 8235-8246, doi: 10.1021/acscatal.7b02193.
16. Pappas, D. K.; Borfecchia, E.; Dyballa, M.; Pankin, I. A.; Lomachenko, K. A.; Martini, A.; Signorile, M.; Teketel, S.; Arstad, B.; Berlier, G.; Lamberti, C.; Bordiga, S.; Olsbye, U.; Lillerud, K. P.; Svelle, S.; Beato, P.; Methane to Methanol: Structure-Activity Relationships for Cu-CHA. Journal of the American Chemical Society 2017, 139, 14961-14975, doi: 10.1021/jacs.7b06472.
15. Dai, W.; Cao, G.; Yang, L.; Wu, G.; Dyballa, M.; Hunger, M.; Guan, N.; Li, L.; Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density. Catalysis Science & Technology 2017, 7, 607-618, doi: 10.1039/c6cy02564a.
14. Dyballa, M.; Becker, P.; Trefz, D.; Klemm, E.; Fischer, A.; Jakob, H.; Hunger, M.; Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22. Applied Catalysis A: General 2016, 510, 233-243, doi: 10.1016/j.apcata.2015.11.017.
13. Dyballa, M.; Obenaus, U.; Rosenberger, M.; Fischer, A.; Jakob, H.; Klemm, E.; Hunger, M.; Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion. Microporous and Mesoporous Materials 2016, 233, 26-30, doi: 10.1016/j.micromeso.2016.06.044.
12. Obenaus, U.; Neher, F.; Scheibe, M.; Dyballa, M.; Lang, S.; Hunger, M.; Relationships between the Hydrogenation and Dehydrogenation Properties of Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Studied by In Situ MAS NMR Spectroscopy and Conventional Heterogeneous Catalysis. The Journal of Physical Chemistry C 2016, 120, 2284-2291, doi: 10.1021/acs.jpcc.5b11367.
11. Dai, W.; Dyballa, M.; Wu, G.; Li, L.; Guan, N.; Hunger, M.; Intermediates and Dominating Reaction Mechanism During the Early Period of the Methanol-to-Olefin Conversion on SAPO-41. The Journal of Physical Chemistry C 2015, 150123144728006, doi: 10.1021/jp5118757.
10. Dai, W.; Wang, C.; Yi, X.; Zheng, A.; Li, L.; Wu, G.; Guan, N.; Xie, Z.; Dyballa, M.; Hunger, M.; Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from NMR Spectroscopy and DFT Calculations. Angew Chem Int Ed 2015, 54, 8783-6, doi: 10.1002/anie.201502748.
9. Dyballa, M.; Obenaus, U.; Lang, S.; Gehring, B.; Traa, Y.; Koller, H.; Hunger, M.; Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange. Microporous and Mesoporous Materials 2015, 212, 110-116, doi: 10.1016/j.micromeso.2015.03.030.
8. Näfe, G.; López-Martínez, M. A.; Dyballa, M.; Hunger, M.; Traa, Y.; Hirth, T.; Klemm, E.; Deactivation behavior of alkali-metal zeolites in the dehydration of lactic acid to acrylic acid. Journal of Catalysis 2015, 329, 413-424, doi: 10.1016/j.jcat.2015.05.017.
7. Obenaus, U.; Dyballa, M.; Lang, S.; Scheibe, M.; Hunger, M.; Generation and Properties of Brønsted Acid Sites in Bifunctional Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Investigated by Solid-State NMR Spectroscopy. The Journal of Physical Chemistry C 2015, 119, 15254-15262, doi: 10.1021/acs.jpcc.5b03149.
6. Dai, W.; Wang, C.; Dyballa, M.; Wu, G.; Guan, N.; Li, L.; Xie, Z.; Hunger, M.; Understanding the Early Stages of the Methanol-to-Olefin Conversion on H-SAPO-34. ACS Catalysis 2014, 5, 317-326, doi: 10.1021/cs5015749.
5. Sun, X.; Dyballa, M.; Yan, J.; Li, L.; Guan, N.; Hunger, M.; Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2. Chemical Physics Letters 2014, 594, 34-40, doi: 10.1016/j.cplett.2014.01.014.
4. Dyballa, M.; Klemm, E.; Weitkamp, J.; Hunger, M.; Effect of Phosphate Modification on the Brønsted Acidity and Methanol-to-Olefin Conversion Activity of Zeolite ZSM-5. Chemie Ingenieur Technik 2013, 85, 1719-1725, doi: 10.1002/cite.201300066.
3. Henning, H.; Dyballa, M.; Scheibe, M.; Klemm, E.; Hunger, M.; In situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y. Chemical Physics Letters 2013, 555, 258-262, doi: 10.1016/j.cplett.2012.10.068.
2. Santi, D.; Rabl, S.; Calemma, V.; Dyballa, M.; Hunger, M.; Weitkamp, J.; Effect of Noble Metals on the Strength of Brønsted Acid Sites in Bifunctional Zeolites. ChemCatChem 2013, 5, 1524-1530, doi: 10.1002/cctc.201200675.
1. Lieder, C.; Opelt, S.; Dyballa, M.; Henning, H.; Klemm, E.; Hunger, M.; Adsorbate Effect on AlO4(OH)2 Centers in the Metal-Organic Framework MIL-53 Investigated by Solid-State NMR Spectroscopy. The Journal of Physical Chemistry C 2010, 114, 16596-16602, doi: 10.1021/jp105700b.
WO2016/097141A1 Novel zeolite-based catalysts